

 (Affiliated to Osmania University & Approved by AICTE, New Delhi)

LABORATORY MANUAL

ELECTRICAL SIMUALATION LABORATORY

NAME:__________________________________

ROLL NO:_______________________________

BRANCH:_________________________________

SEM:_____________________________________

DEPARTMENT OF ELECTRICAL AND ELECTRONCS

ENGINEERING
--

 METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

Empower youth- Architects of Future World

B.E, VII Semester (CBCS): 2022-23

VISION

To produce ethical, socially conscious and innovative professionals

who would contribute to sustainable technological development of the

society.

MISSION

To impart quality engineering education with latest technological

developments and interdisciplinary skills to make students succeed in

professional practice.

To encourage research culture among faculty and students by

establishing state of art laboratories and exposing them to modern industrial

and organizational practices.

To inculcate humane qualities like environmental consciousness,

leadership, social values, professional ethics and engage in independent and

lifelong learning for sustainable contribution to the society.

METHODIST
Estd:2008

COLLEGE OF ENGINEERING AND

TECHNOLOGY

DEPARTMENT
 OF

ELECTRICAL AND ELECTRONICS

ENGINEERING

LABORATORY MANUAL

ELECTRICAL SIMULATION LABORATORY

Prepared

By

Mr. JARAPALA RAMESH BABU,

Assistant Professor

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

VISION

To become a reputed centre for imparting quality education in

Electrical and Electronics Engineering with human values,

ethics and social responsibility.

MISSION

 To impart fundamental knowledge of Electrical, Electronics

and Computational Technology.

 To develop professional skills through hands-on experience

aligned to industry needs.

 To undertake research in sunrise areas of Electrical and

Electronics Engineering.

 To motivate and facilitate individual and team activities to

enhance personality skills.

 METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES

 BE-Electrical Engineering graduates shall be able to:

 PEO1. Utilize domain knowledge required for analyzing and resolving practical

Electrical Engineering problems.

 PEO2.Willing to undertake inter-disciplinary projects, demonstrate the professional skills

and flair for investigation.

 PEO3. Imbibe the state of the art technologies in the ever transforming technical

scenario.

 PEO4. Exhibit social and professional ethics for sustainable development of the society.

 METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELCTRONICS ENGINEERING

PROGRAM OUTCOMES
Engineering Graduates will have ability to:

 PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals,

and an engineering specialization to the solution of electrical and electronics engineering problems.

 PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex electrical and

electronics engineering problems reaching substantiated conclusions using first principles of mathematics,

natural sciences, and engineering sciences.

 PO3. Design/development of solutions: Design solutions for complex electrical and electronics

engineering problems and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

 PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods

including design of experiments, analysis and interpretation of data, and synthesis of the information to

provide valid conclusions.

 PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modelling to complex electrical and electronics

engineering activities with an understanding of the limitations.

 PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

electrical and electronics engineering practice.

 PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable

development.

 PO.8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of

the electrical and electronics engineering practice.

 PO9. Individual and team work: Function effectively as an individual, and as a member or leader in

diverse teams, and in multidisciplinary settings.

 PO10. Communication: Communicate effectively on complex engineering activities with the engineering

community and with society at large, such as, being able to comprehend and write effective reports and

design documentation, make effective presentations, and give and receive clear instructions.

 PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering

and management principles and apply these to one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments.

 PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

At the end of BE program Electrical and Electronics Engineering graduates will be able to:

 PSO1.Provide effective solutions in the fields of Power Electronics, Power Systems and Electrical Machines

using MATLAB/MULTISIM.

 PSO2. Design and Develop various Electrical and Electronics Systems, particularly Renewable Energy

Systems.

 PSO3. Demonstrate the overall knowledge and contribute for the betterment of the society.

METHODIST
 Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

I. PREREQUISITE(S):

Level Credits Semester Prerequisites

UG 1 1 Electrical simulation

II. SCHEME OF INSTRUCTIONS

Lectures Tutorials Practicals Credits

0 0 2 1

III. SCHEME OF EVALUATION & GRADING

S. No Component Duration Maximum Marks

Continuous Internal Evaluation (CIE)

1. Internal Examination – I and II 1 hour each 25

CIE (Total)

 25

2.
Semester End Examination

(University Examination)
3 hours 50

TOTAL 75

%Marks

Range
>=90 80 to < 90 70 to < 80 60 to < 70 50 to < 60 40 to < 50 < 40 Absent

Grade S A B C D E F Ab

Grade

Point
10 9 8 7 6 5 0 -

METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CO No. Course Outcome Taxonomy

Level

Compose (Write)MATLAB code using some basic commands. Creating

Develop MATLAB code for analyzing power system network by obtaining

line parameters, Z, Y matrices, and Economics of power systems
Apply

Simulate the concepts of Electrical Circuits, to design a led, lag, led and lag

compensator and obtain the characteristics by Control Systems and interpret

data.

Create

Demonstrate (Determine) the knowledge of programming environment,

compiling, debugging, linking and executing variety of programs in

MATLAB.

Evaluate

Demonstrate ability to develop Simulink models for various electrical

systems.
Apply

Validate simulated results from programs/Simulink models with theoretical

calculations.
Apply

MAPPING OF COs WITH POs & PSOs

Correlation Level: High – 3; Medium – 2; Low – 1

PO /

CO

PO

1

PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PSO2 PSO3

1 1 2 2 3 - - - 1 1 1 - 1 1 -

1 1 2 1 1 3 1 1 2 1 1 - 1 1 -

1 1 2 2 3 - - - 1 1 1 - 1 1 -

1 2 3 1 1 1 2 1 1 1 1 - 1 1 -

1 1 2 1 1 3 1 1 2 1 1 - 1 1 -

1 1 2 1 1 3 1 1 2 1 1 - 1 1 -

1 1 2.16 1.33 1.66 2.5 1.25 1 1.5 1 1 - 1 1 -

 METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

C466.1

C466.2

C466.3

C466.4

C466.5

C466.6

C466

466.1
466.2

466.3

466.4

466.5

466.6

LABORATORY CODE OF CONDUCT

1. Students should report to the labs concerned as per the scheduled time table.

2. Students, who report late to the labs will not be permitted to perform the experiment

scheduled for the day.

3. Students to bring a 100 pages note book to enter the readings /observations while

performing the experiment.

4. After completion of the experiment, certification of the staff in-charge concerned, in the

observation book is necessary.

5. Staff member in-charge shall evaluate for 25 marks, each experiment, based on

continuous evaluation which will be entered in the continuous internal evaluation sheet.

6. The record of observations, along with the detailed procedure of the experiment

performed in the immediate previous session should be submitted for certification by the

staff member in-charge.

7. Not more than three students in a group would be permitted to perform the experiment

on the equipment-based lab set up. However only one student is permitted per computer

system for computer-based labs.

8. The group-wise division made at the start of the semester should be adhered to, and no

mix up with any other group would be allowed.

9. The components required, pertaining to the experiment should be collected from the

stores in-charge, after duly filling in the requisition form / log register.

10. After the completion of the experiment, students should disconnect the setup made by

them, and return all the components / instruments taken for the purpose, in order.

11. Any damage of the equipment or burn-out of components will be charged at cost as a

penalty or the total group of students would be dismissed from the lab for the

semester/year.

12. Students should be present in the lab for the total time duration, as scheduled.

13. Students are required to prepare thoroughly, before coming to Laboratory to perform the

experiment.

14. Procedure sheets / data sheets provided to the students, if any, should be maintained

neatly and returned after the completion of the experiment.

 METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DO’S AND DON’TS IN THE LABORATORY

Do’s

1. Remove your footwear before you enter the lab.

2. Always keep quiet. Be considerate to other lab users.

3. Report any problems with the computer to the person in charge.

4. Shut down the computer properly.

Don’ts

1. Do not bring any food or drinks in the computer room.

2. Do not touch any part of the computer with wet hands.

3. Do not hit the keys on the computer too hard.

4. Don’t damage, remove, or disconnect any labels, parts, cables or equipment.

5. Do not install or download any software or modify or delete any system files on any lab

computers.

6. If you leave the lab, do not leave your personal belongings unattended.

Before Leaving Lab:

 Place the stools under the lab bench.

 Turn off the power to all instruments.

 Return all the equipment to lab assistant .

 Turn off the main power switch to the lab bench.

 Please check the laboratory notice board regularly for updates.

 METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CONTENTS

Sl. No. Name of Experiment Page No.

1 Verification of Network theorems

 a. Thevinin’s theorem

 b. Superposition theorem

 c. Maximum power transfer theorem.

2 Series and Parallel resonance.

3 Bode plot, Root-Locus plot and Nyquist plot.

4 Transfer function analysis

(i) Time response for Step input (ii) Frequency response for Sinusoidal

input.

5 Load flow studies

6 Fault analysis.

7 Economic Power Scheduling

8 Design of filters (Low pass filter)

9 Chopper fed dc motor drives.

10 VSI /CSI Fed induction motors drives. Doubly fed Induction motor.

Additional Experiments

11 Automatic Generation control

12 Z-Bus Building algorithm using Matlab Software

 METHODIST
Estd:2008 COLLEGE OF ENGINEERING AND TECHNOLOGY

INTRODUCTION TO MATLAB

What is MATLAB?

MATLAB (short for MATrixLABoratory) is a special-purpose computer program optimized to

perform engineering and scientific calculations. It is a high-performance language for technical

computing. It integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical notation.

Typical uses include:

 Math and computation

 Algorithm development

 Modelling, simulation and prototyping

 Data analysis, exploration and visualization

 Scientific and engineering graphics

 Application development, including Graphical User Interface (GUI) building

MATLAB is an interactive system whose basic data element is an array that does not require

dimensioning. This allows you to solve many technical computing problems, especially those

with matrix and vector formulations, in a fraction of the time it would take to write a program in

a scalar non-interactive language such as C, C++ or Fortran.

MATLAB has evolved over a period of years with input from many users. In university

environments, it is the standard instructional tool for introductory and advanced courses in

mathematics, engineering and science. In industry, MATLAB is the tool of choice for high-

productivity research, development and analysis.

MATLAB features a family of application-specific solution called Toolboxes. Very important to

most users of MATLAB, toolboxes allow you to learn and apply specialized technology.

Toolboxes are comprehensive collections of MATLAB function (m-files) that extend the

MATLAB environment to solve particular classes of problems. Areas in which toolboxes are

available include signal processing, control systems, neural networks, fuzzy logic, wavelets,

image processing, simulation and many others.

MATLAB System

The MATLAB system consists of five main parts:

1. The MATLAB language. This is a high-level matrix/array language with control flow

statements, functions, data structures, input/output, and object-oriented programming

features. It allows both “programming in the small” to rapidly create quick and dirty

throw-away programs, and “programming in the large” to create complete large and

complex application programs.

2. The MATLAB working environment. This is the set of tools and facilities that you

work with as the MATLAB user or programmer. It includes facilities for managing the

variables in your workspace and importing and exporting data. It also includes tools for

developing, managing, debugging, and profiling M-files, MATLAB’s applications.

3. Handle Graphics. This is the MATLAB graphics system. It includes high-level

commands for two-dimensional and three-dimensional data visualization, image

processing, animation, and presentation graphics. It also includes low-level commands

that allow you to fully customize the appearance of graphics as well as to build complete

Graphical User Interfaces on your MATLAB applications.

4. The MATLAB mathematical function library. This is a vast collection of

computational algorithms ranging from elementary functions like sum, sine, cosine, and

complex arithmetic, to more sophisticated functions like matrix inverse, matrix

eigenvalues, Bessel functions, and fast Fourier transforms.

5. The MATLAB Application Program Interface (API). This is a library that allows you

to write C and Fortran programs that interact with MATLAB. It include facilities for

calling routines from MATLAB (dynamic linking), calling MATLAB as a computational

engine, and for reading and writing MAT-files.

The Advantages of MATLAB

MATLAB has many advantages compared to conventional computer languages for technical

problem solving. Among them are:

1. Ease of Use. MATLAB is an interpreted language. Program may be easily written and

modified with the built-in integrated development environment and debugged with the

MATLAB debugger. Because the language is so easy to use, it is ideal for the rapid

prototyping of new programs.

2. Platform Independence. MATLAB is supported on many different computer systems,

providing a large measure of platform independence. At the time of this writing, the

language is supported on Windows NT/2000/XP, Linux, several versions of UNIX and

the Macintosh.

3. Predefined Function. MATLAB comes complete with an extensive library of predefined

functions that provide tested and pre-packaged solutions to many basic technical tasks.

For examples, the arithmetic mean, standard deviation, median, etc. these and hundreds

of other functions are built right into the MATLAB language, making your job much

easier. In addition to the large library of function built into the basic MATLAB language,

there are many special-purpose toolboxes available to help solve complex problems in

specific areas. There is also an extensive collection of free user-contributed MATLAB

programs that are shared through the MATLAB Web site.

4. Device-Independent Plotting. Unlike most other computer languages, MATLAB has

many integral plotting and imaging commands. The plots and images can be displayed on

any graphical output device supported by the computer on which MATLAB is running.

5. Graphical User Interface. MATLAB includes tools that allow a programmer to

interactively construct a graphical user interface, (GUI) for his or her program. With this

capability, the programmer can design sophisticated data-analysis programs that can be

operated by relatively inexperienced users.

6. MATLAB Compiler. MATLAB’s flexibility and platform independence is achieved by

compiling MATLAB programs into a device-independent p-code, and then interpreting

the p-code instructions at runtime. Unfortunately, the resulting programs can sometimes

execute slowly because the MATLAB code is interpreted rather than compiled.

Disadvantages of MATLAB

MATLAB has two principal disadvantages. The first is that it is an interpreted language and

therefore can execute more slowly than compiled languages. This problem can be mitigated by

properly structuring the MATLAB program, and by the use of the MATLAB compiler to

compile the final MATLAB program before distribution and general use.

The second disadvantage is cost: a full copy of MATLAB is five to ten times more expensive

than a conventional C or Fortran compiler. This relatively high cost is more than offset by then

reduced time required for an engineer or scientist to create a working program, so MATLAB is

cost-effective for businesses. However, it is too expensive for most individuals to consider

purchasing. Fortunately, there is also an inexpensive Student Edition of MATLAB, which is a

great tool for students wishing to learn the language. The Student Edition of MATLAB is

essentially identical to the full edition.

Starting MATLAB

You can start MATLAB by double-clicking on the MATLAB icon or invoking the application

from the Start menu of Windows. The main MATLAB window, called the MATLAB Desktop,

will then pop-up and it will look like this:

Figure 1: The Default MATLAB desktop

When MATLAB executes, it can display several types of windows that accept commands or

display information. It integrates many tools for managing files, variables and applications

within the MATLAB environment. The major tools within or accessible from the MATLAB

desktop are:

1. The Current Directory Browser

2. The Workspace Window

3. The Command Window

4. The Command History Window

5. The Start Button

6. The Help Window

If desired, this arrangement can be modified by selecting an alternate choice from [View]

[Desktop Layout]. By default, most MATLAB tools are “docked” to the desktop, so that they

appear inside the desktop window. However, you can choose to “undock” any or all tools,

making them appear in windows separate from the desktop.

The Command Window

The Command Window is where the command line prompt for interactive commands is located.

Once started, you will notice that inside the MATLAB command window is the text:

Click in the command window to make it active. When a window becomes active, its titlebar

darkens. The “>>” is called the Command Prompt, and there will be a blinking cursor right after

it waiting for you to type something. You can enter interactive commands at the command

prompt (>>) and they will be executed on the spot.

Figure 2: The Command Window

As an example, let’s enter a simple MATLAB command, which is the date command. Click the

mouse where the blinking cursor is and then type date and press the ENTER key. MATLAB

should then return something like this:

Where the current date should be returned to you instead of 01-Sep-2006. Congratulation! You

have just successfully executed your first MATLAB command!

To get started, select “MATLAB Help” from the Help menu.

>> date

ans = 01-Sep-2006

The Command History Window

The Command History Window, contains a log of commands that have been executed within the

command window. This is a convenient feature for tracking when developing or debugging

programs or to confirm that commands were executed in a particular sequence during a multi-

step calculation from the command line.

Figure 3: The Command History Window

The Current Directory Browser

The Current Directory Browser displays a current directory with a listing of its contents. There is

navigation capability for resetting the current directory to any directory among those set in the

path. This window is useful for finding the location of particular files and scripts so that they can

be edited, moved, renamed or deleted. The default directory is the Work subdirectory of the

original MATLAB installation directory

Figure 4: The Directory Browser

.

The Workspace Window

The Workspace Window provides an inventory of all the items in the workspace that are

currently defined, either by assignment or calculation in the Command Window or by importing

with a load or similar command from the MATLAB command line prompt.

Figure 5: The Workspace Window

These items consist of the set of arrays whose elements are variables or constants and which

have been constructed or loaded during the current MATLAB session and have remained stored

in memory. Those which have been cleared and no longer are in memory will not be included.

The Workspace Window shows the name of each variable, its value, its array size, its size in

bytes, and the class. Values of a variable or constant can be edited in an Array Editor which is

launched by double clicking its icon in the Workspace Window.

The Help Window

You can access the online help in one of several ways. Typing help at the command prompt will

reveal a long list of topics on which help is available. Just to illustrate, try typing help general.

Now you see a long list of “general purpose” MATLAB commands. In addition, you can also get

help on the certain command. For example, date command.

Figure 6: The Help Window

The output of help also refers to other functions that are related. In this example the help also

tells you, See also NOW, CLOCK, DATENUM. You can now get help on these functions using

the three different commands as well

>> help date

DATE Current date as date string.

S = DATE returns a string containing the date in dd-mmm-yyyy format.

See also NOW, CLOCK, DATENUM.

There is a much more user-friendly way to access the online help, namely via the MATLAB

Help Browser. Separate from the main desktop layout is a Help desktop with its own layout. This

utility can be launched by selecting [Help] � [MATLAB Help] from the Help pull down menu.

This Help desktop has a right side which contains links to help with functions, help with

graphics, and tutorial type documentation.

The Start Button

The Start Button (see figure 1) allows a user to access MATLAB tools, desktop tools, help files,

etc. it works just like the Start button on a Windows desktop. To start a particular tool, just click

on the Start Button and select the tool from the appropriate sub-menu.

Interrupting Calculations

If MATLAB is hung up in a calculation, or is just taking too long to perform an operation, you

can usually abort it by typing [CTRL + C] (that is, hold down the key labeled CTRL, and press

C).

Ending a Session

One final note, when you are all done with your MATLAB session you need to exit MATLAB.

To exit MATLAB, simply type quit or exit at the prompt. You can also click on the special

symbol that closes your windows (usually an × in the upper right-hand corner). Another way to

exit is by selecting [File] [Exit MATLAB]. Before you exit MATLAB, you should be sure to

save any variables, print any graphics or other files you need, and in general clean up after

yourself.

MATLAB Commands and Functions

General Purpose Commands

Table.1: Operators and Special Characters:

Operators and Special Characters

+ Plus; addition operator.

- Minus; subtraction operator.

* Scalar and matrix multiplication operator.

.* Array multiplication operator.

^ Scalar and matrix exponentiation operator.

.^ Array exponentiation operator.

\ Left-division operator.

/ Right-division operator.

.\ Array left-division operator.

./ Array right-division operator.

: Colon; generates regularly spaced elements and represents an

entire row or column.

() Parentheses; encloses function arguments and array indices;

overrides precedence.

[] Brackets; enclosures array elements.

. Decimal point.

… Ellipsis; line-continuation operator.

, Comma; separates statements and elements in a row.

; Semicolon; separates columns and suppresses display.

% Percent sign; designates a comment and specifies formatting.

_ Quote sign and transpose operator.

._ Nonconjugated transpose operator.

= Assignment (replacement) operator.

Commands for Managing a Session

clc Clears Command window.

clear Removes variables from memory.

exist Checks for existence of file or variable.

global Declares variables to be global.

help Searches for a help topic.

lookfor Searches help entries for a keyword.

quit Stops MATLAB.

who Lists current variables.

whos Lists current variables (long display).

Special Variables and Constants

ans Most recent answer.

eps Accuracy of floating-point precision.

i,j The imaginary unit -1.

Inf Infinity.

NaN Undefined numerical result (not a number).

pi The number π .

System and File Commands

 cd Changes current directory.

date Displays current date.

delete Deletes a file.

diary Switches on/off diary file recording.

dir Lists all files in current directory.

load Loads workspace variables from a file.

path Displays search path.

pwd Displays current directory.

save Saves workspace variables in a file.

type Displays contents of a file.

what Lists all MATLAB files in the current directory.

wklread Reads .wk1 spreadsheet file.

Table.2:Input/output and Formatting Commands:

Input/Output Commands

disp Displays contents of an array or string.

fscanf Read formatted data from a file.

format Controls screen-display format.

fprintf Performs formatted writes to screen or file.

input Displays prompts and waits for input.

; Suppresses screen printing.

Format Codes for fprintf and fscanf

%s Format as a string.

%d Format as an integer.

%f Format as a floating point value.

%e Format as a floating point value in scientific notation.

%g Format in the most compact form: %f or %e.

\n Insert a new line in the output string.

\t Insert a tab in the output string.

Numeric Display Formats

format short Four decimal digits (default).

format long 16 decimal digits.

format short e Five digits plus exponent.

format long e 16 digits plus exponents.

format bank Two decimal digits.

format + Positive, negative, or zero.

format rat Rational approximation.

format compact Suppresses some line feeds.

format compact X Resets to less compact display mode.

Table.3:Vector, Matrix and Array Commands:

Array Commands

cat Concatenates arrays.

find Finds indices of nonzero elements.

length Computers number of elements.

linspace Creates regularly spaced vector.

logspace Creates logarithmically spaced vector.

max Returns largest element.

min Returns smallest element.

prod Product of each column.

reshape Change size

size Computes array size.

Sort Sorts each column.

sum Sums each column.

Special Matrices

eye Creates an identity matrix.

ones Creates an array of ones.

zeros Creates an array of zeros.

Matrix Arithmetic

cross Computes cross products.

dot Computes dot products.

Matrix Commands for Solving Linear Equations

det Computes determinant of an array.

inv Computes inverse of a matrix.

pinv Computes pseudoinverse of a matrix.

rank Computes rank of a matrix.

rref Computes reduced row echelon form.

Table.4: Plotting Commands:

Basic xy Plotting Commands

axis Sets axis limits.

fplot Intelligent plotting of functions.

grid Displays gridlines.

plot Generates xy plot.

print Prints plot or saves plot to a file

title Puts text at top of plot.

xlabel Adds text label to x-axis.

ylabel Adds text label to y-axis.

Plot Enhancement Commands

axes Creates axes objects.

close Closes the current plot.

close all Closes all plots.

figure Opens a new figure window.

gtext Enables label placement by mouse.

hold Freezes current plot.

legend Legend placement by mouse.

refresh Redraws current figure window.

set Specifies properties of objects such as axes.

subplot Creates plots in subwindows.

text Places string in figure.

Specialized Plot Commands

bar Creates bar chart.

loglog Creates log-log plot.

polar Creates polar plot.

semilogx Creates semilog plot (logarithmic abscissa).

semilogy Creates semilog plot (logarithmic ordinate).

stairs Creates stairs pot.

stem Creates stem plot.

Three-Dimensional Plotting Commands

contour Creates contour plot.

mesh Creates three-dimensional mesh surface plot.

meshc Same as mesh with contour plot underneath.

meshz. Same as mesh with vertical lines underneath

plot3 Creates three-dimensional plots from lines and points.

surf Creates shaded three-dimensional mesh surface plot.

surfc Same as surf with contour plot underneath.

meshgrid Creates rectangular grid.

waterfall Same as mesh with mesh lines in one direction.

zlabel Adds text label to z-axis.

Histogram Functions

bar Creates a bar chart.

hist Aggregates the data into equally spaced bins.

histc Aggregates the data into unequally spaced bins.

Table.5: Colors, Symbols and Line Types:

Color Symbol Line

y yellow . point - solid

m magenta o circle : dotted

c cyan x x-mark -. dash dotted

r red + plus -- dashed

g green * star

b blue d diamond

w white v triangle (down)

k black ^ triangle (up)

 < triangle (left)

 > triangle (right)

 p pentagram

 h hexagram

Table.6: Programming:

Logical and Relational Operators

== Relational operator: equal to.

~= Relational operator: not equal to.

< Relational operator: less than.

<= Relational operator: less than or equal to.

> Relational operator: greater than.

>= Relational operator: greater than or equal to.

& Logical operator: AND.

| Logical operator: OR.

~ Logical operator: NOT.

xor Logical operator: EXCLUSIVE OR.

Program Flow Control

break Terminates execution of a loop.

case Provides alternate execution paths within switch structure.

else Delineates alternate block of statements.

elseif Conditionally executes statements.

end Terminates for, while, and if statements.

error Display error messages.

for Repeats statements a specific number of times

if Executes statements conditionally.

otherwise Default part of switch statement.

return Return to the invoking function.

switch Directs program execution by comparing point with case

expressions.

warning Display a warning message.

while Repeats statements an indefinite number of times.

Logical Functions

any True if any elements are nonzero.

all True if all elements are nonzero.

find Finds indices of nonzero elements.

finite True if elements are finite.

isnan True if elements are undefined.

isinf True if elements are infinite.

isempty True if matrix is empty.

isreal True if all elements are real.

M-Files

eval Interpret strings containing Matlab expressions.

feval Function evaluation.

function Creates a user-defined function M-file.

global Define global variables.

nargin Number of function input arguments.

nargout Number of function output arguments.

script Script M-files

Timing

cputime CPU time in seconds.

clock Current date and time as date vector.

Table.7: Mathematical Functions:

Exponential and Logarithmic Functions

exp(x) Exponential; ex.

log(x) Natural logarithm; ln(x).

log10(x) Common (base 10) logarithm; log(x)= log10(x).

sqrt(x) Square root; x.

Trigonometric Functions

acos(x) Inverse cosine; arcos x = cos –1 (x).

acot(x) Inverse cotangent; arccot x = cot –1(x).

acsc(x) Inverse cosecant; arcs x = csc –1 (x).

asec(x) Inverse secant; arcsec x = sec –1 (x).

asin(x) Inverse sine; arcsin x = sin –1 (x).

atan(x) Inverse tangent; arctan x = tan –1 (x).

atan2(y,x) Four-quadrant inverse tangent.

cos(x) Cosine; cos(x).

cot(x) Cotangent; cot(x).

csc(x) Cosecant; csc(x).

sec(x) Secant; sec(x).

sin(x) Sine; sin(x).

tan(x) Tangent; tan(x).

Hyperbolic Functions

acosh(x) Inverse hyperbolic cosine; cosh –1 (x).

acoth(x) Inverse hyperbolic cotangent; coth –1 (x).

acsch(x) Inverse hyperbolic cosecant; csch –1 (x).

asech(x) Inverse hyperbolic secant; sech –1 (x).

asinh(x) Inverse hyperbolic sine; sinh –1 (x).

atanh(x) Inverse hyperbolic tangent; tanh –1 (x).

cosh(x) Hyperbolic cosine; cosh(x).

coth(x) Hyperbolic cotangent; cosh(x)/sinh(x).

csch(x) Hyperbolic cosecant; 1/sinh(x).

sech(x) Hyperbolic secant; 1/cosh(x).

sinh(x) Hyperbolic sine; sinh(x).

tanh(x) Hyperbolic tangent; sinh(x)/cosh(x).

Complex Functions

abs(x) Absolute value; |x|.

angle(x) Angle of a complex number x.

conj(x) Complex conjugate of x.

imag(x) Imaginary part of a complex number x.

real(x) Real part of a complex number x.

Statistical Functions

erf(x) Computes the error function erf (x).

mean Calculates the average.

median Calculates the median.

std Calculates the standard deviation.

Random Number Functions

rand Generates uniformly distributed random numbers between 0 and

1.

randn Generates normally distributed random numbers.

Numeric Functions

ceil Rounds to the nearest integer toward •.

fix Rounds to the nearest integer toward zero.

floor Rounds to the nearest integer toward - •.

round Rounds towards the nearest integer.

sign Signum function.

Table.8: Numerical Methods:

Polynomial and Regression Functions

conv Computes product of two polynomials

deconv Computes ratio of polynomials.

eig Computes the eigenvalues of a matrix.

poly Computes polynomial from roots.

polyfit Fits a polynomial to data.

polyval Evaluates polynomial and generates error estimates.

roots Computes polynomial roots.

Interpolation Functions

interp1 Linear and cubic-spline interpolations of a function of one

variable.

interp2 Linear interpolation of a function of two variables.

spline Cubic-spline interpolation.

unmkpp Computes the coefficients of cubic-spinepolynomials.

Root Finding and Minimization

fmin Finds minimum of single-variable function.

fmins Finds minimum of multivariable function.

fzero Finds zero of single-variable function.

Numerical Integration Functions

quad Numerical integration with adaptive Simpson’s rule.

quadl Numerical integration with adaptive Lobatto quadrature.

trapz Numerical integration with the trapezoidal rule.

Numerical Differentiation Functions

diff(x) Computes the difference between adjacent elements in vectorx.

polyder Differentiates a polynomial, a polynomial product, or a

polynomial quotient.

Symbolic Solution of Algebraic Equations

det Returns the determinant of a matrix.

eig Returns the eigenvalues (characteristic roots) of a matrix.

inv Returns the inverse of a matrix.

poly Returns the characteristic polynomial of a matrix.

EXPT. NO. 1(a).VERIFICATION OF SUPERPOSITION THEOREM

Aim: To verify Superposition theorem.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

“In a linear network with several independent sources which include equivalent sources due

to initial conditions, and linear dependent sources, the overall response in any part of the

network is equal to the sum of individual responses due to each independent source,

considered separately, with all other independent sources reduced to zero”.

Procedure:

Step 1:

1. Make the connections as shown in the circuit diagram by using
MULTISIM/MATLAB Simulink.

2. Measure the response ‘I’ in the load resistor by considering all the sources 10V, 15V

and 8V in the network.

Step 2:

1. Replace the sources 15V and 8V with their internal impedances (short circuited).

2. Measure the response ‘I1’ in the load resistor by considering 10V source in the network.

Step 3:

1. Replace the sources 10V and 8V with their internal impedances (short circuited).

2. Measure the response ‘I2’ in the load resistor by considering 15V source in the network.

Step 4:

1. Replace the sources 10V and 15V with their internal impedances (short circuited).

2. Measure the response ‘I3’ in the load resistor by considering 8V source in the network.

The responses obtained in step 1 should be equal to the sum of the responses obtained
in step 2, 3 and 4.

I=I1+I2+I3, Hence Superposition Theorem is verified.

Fig.1.(a): Superposition Theorem

EXP. NO. 1(b).VERIFICATION OF THEVENIN’S THEOREM

Aim: To Verify Thevenin’s Theorem.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

“Any two terminal networks consisting of linear impedances and generators may be replaced

at the two terminals by a single voltage source acting in series with impedance. The voltage

of the equivalent source is the open circuit voltage measured at the terminals of the network

and the impedance, known as Thevenin’s equivalent impedance, ZTH, is the impedance

measured at the terminals with all the independent sources in the network reduced to zero”.

Procedure:

Step 1:

1. Make the connections as shown in the circuit diagram by using

MULTISIM/MATLAB Simulink.

2. Measure the response ‘I’ in the load resistor by considering all the sources in the network.

Step 2: Finding Thevenin’s Resistance(R TH)

1. Open the load terminals and replace all the sources with their internal impedances.

2. Measure the impedance across the open circuited terminal which is known as

Thevenin’s Resistance.

Step 3: Finding Thevenin’s Voltage (V TH)

1. Open the load terminals and measure the voltage across the open circuited terminals.

2. Measured voltage will be known as Thevenin’s Voltage.

Step 4: Thevenin’s Equivalent Circuit

1. VTH and RTH are connected in series with the load.

2. Measure the current through the load resistor I= .

Current measured from Thevenin’s Equivalent Circuit should be same as current obtained

from the actual circuit.

I = IL, Hence Thevenin’s Theorem is verified.

Fig.1(b): Thevenin’s Theorem

EXPT. NO. 1(c).VERIFICATION OF MAXIMUM POWER TRANSFER THEOREM

Aim: To Verify Maximum Power Transfer Theorem.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

“In any circuit the maximum power is transferred to the load when the load resistance is

equal to the source resistance. The source resistance is equal to the Thevenin’s equal

resistance”.

Procedure:

Step 1:

1. Make the connections as shown in the circuit diagram by using Multisim/MATLAB

Simulink.

2. Measure the Power across the load resistor by considering all the sources in the network.

Step 2: Finding Thevenin’s Resistance (RTH)

1. Open the load terminals and replace all the sources with their internal impedances.

2. Measure the impedance across the open circuited terminal which is known as

Thevenin’s Resistance.

Step 3: Finding Thevenin’s Voltage (VTH)

1. Open the load terminals and measure the voltage across the open circuited terminals.

2. Measured voltage will be known as Thevenin’s Voltage.

Step 4: Measuring Power for different Load Resistors

1. VTH and RTH are connected in series with the load.

2. Measure power across the load by considering RL=RTH.

3. Measure power by using P = .

4. Verify the power for different values of load resistors (i.e. RL>RTH and RL<RTH)

Power measured from the above steps results in maximum power dissipation when RL=RTH.

Hence Maximum Power Transfer Theorem is verified.

Fig.1(c): Maximum Power Transfer Theorem

M-File Program for Maximum Power Transfer Theorem

clc;

close all;

clear all;

v=input('Enter the Voltage in Volts :');

rth=input('Enter the value of Thevenins Resistance:');

rl=1:0.0001:12;

i=v./(rth+rl);

p=i.^2.*rl;

plot(rl,p);

grid;

title('Maximum Power');

xlabel('Load Resistance in Ohms------->');

ylabel('Power Dissipation in watts-------->');

Thevenins Voltage Vth=

Thevenins Resistance rth=

Current is i=

Power Dissipated P=

Result:

Viva Questions:

1. Statement of superposition and thevenin’s theorem?

2. What is the condition for Maxima theorem?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT. NOT. 2(a).SERIES RESONANCE

Aim: - To obtain the plot of of frequency vs. XL, frequency vs. XC, frequency vs.

impedance andfrequency vs. current for the given series RLC circuit and determine the
resonant frequency and check by theoretical calculations.
R = 15 Ω , C = 10 µF, L = 0.1 H, V = 50V vary frequency in steps of 1 Hz using Matlab.
Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Program:

%Program to find the Series Resonance

clc;

clear all;

close all;

r=input('enter the resistance value----->');

l=input('enter the inductance value------>');

c=input('enter the capacitance value----->');

v=input('enter the input voltage------->');

f=5:2:300;

xl=2*pi*f*l;

xc=(1./(2*pi*f*c));

x=xl-xc;

z=sqrt((r^2)+(x.^2));

i=v./z;

%plotting the graph

subplot(2,2,1);

plot(f,xl);

grid;

xlabel('frequency');

ylabel('X1');

subplot(2,2,2);

plot(f,xc);

grid;

xlabel('frequency');

ylabel('Xc');

subplot(2,2,3);

plot(f,z);

grid;

xlabel('frequency');

ylabel('Z');

subplot(2,2,4);

plot(f,i);

grid;

xlabel('frequency');

ylabel('I');

Result:

enter the resistance value-----

enter the inductance value------

enter the capacitance value-----

enter the input voltage-------

Viva Questions:

1. What is the Resonance?

2. What is the Series Resonance frequency?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT. NO. 2(b).PARALLEL RESONANCE

Aim: To obtain the graphs of frequency vs. BL, frequencyvs. BC, frequency vs. admittance
and frequency vs. current vary frequency in steps for the given circuit and find the resonant
frequency and check by theoretical calculations.
R = 1000ohms , C = 400 u F, L = 1 H, V = 50V vary frequency in steps of 1 Hz using Matlab.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Program:

%Program to find the Parallel Resonance

clc;

clear all;

close all;

r=input('enter the resistance value----->');

l=input('enter the inductance value------>');

c=input('enter the capacitance value----->');

v=input('enter the input voltage------->');

f=0:2:50;
xl=2*pi*f*l;

xc=(1./(2*pi*f*c));

b1=1./xl;

bc=1./xc;

b=b1-bc;

g=1/r;

y=sqrt((g^2)+(b.^2));

i=v*y;

%plotting the graph

subplot(2,2,1);

plot(f,b1);

grid;

xlabel('frequency');

ylabel('B1');

subplot(2,2,2);

plot(f,bc);

grid;

xlabel('frequency');

ylabel('Bc');

subplot(2,2,3);

plot(f,y);

grid;

xlabel('frequency');

ylabel('Y');

subplot(2,2,4);

plot(f,i);

rid;

xlabel('frequency');

ylabel('I');

Result:

Viva Questions:

1. What is the Resonance?

2. What is the Parallel Resonance frequency?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO:3(a).ROOT LOCUS

Aim: To obtain the root locus of the system whose transfer function is defined by

(S+5)
G(S)= ---------------

 S^2+7S+25

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Procedure:

1. Input the numerator and denominator co-efficient.
2. Formulate the transfer function using the numerator and denominators co-efficient

with the help of function T = tf (num, den)
3. Plot the root locus of the above transfer function using rlocus(t).

Program:

%Program to find the root locus of transfer function%

 (s+5)
% -----------
% s^2+7s+25

clc;

clear all;

close all;

% initialzations

num=input('enter the numerator coefficients---->');

den=input('enter the denominator coefficients---->');

%Transfer function
sys=tf(num,den);

rlocus(sys);

PROGRAM OUTPUT:

enter the numerator coefficients---->

enter the denominator coefficients---->

Result:

EXPT.NO:3(b).BODE PLOT

Aim: To obtain the bode plot and to calculate the phase margin, gain margin, phase cross

over and gaincross over frequency for the systems whose open loop transfer function is given

as follows.

25(S+1) (S+7)

G(s) = --------------------------

S(S+2) (S+4) (S+8)

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

The gain margin is defined as the change in open loop gain required to make the

systemunstable. Systems with greater gain margins can withstand greater changes in system

parameters before becoming unstable in closed loop. Keep in mind that unity gain in

magnitude is equal to a gain of zero in dB.

The phase margin is defined as the change in open loop phase shift required to make a
closed loop system unstable.

The phase margin is the difference in phase between the phase curve and -180 deg at

the point corresponding to the frequency that gives us a gain of 0dB (the gain cross

over frequency, Wgc).

Likewise, the gain margin is the difference between the magnitude curve and 0dB at the

point corresponding to the frequency that gives us a phase of -180 deg (the phase cross over

frequency, Wpc).

Procedure:

1. Input the zeroes, poles and gain of the given system.

2. Formulate the transfer function from zeroes, poles and gain of the system.

3. Plot the bode plot using function bode (t).

4. Estimate PM,GM, WPC , and WGC. Using function margin.

Program:

Clc;

Clear all;

Close all;

% initialzations

k=input('enter the gain---->');
z=input('enter the zeros---->');

p=input('enter the ploes---->');

t=zpk(z,p,k);

bode(t);

[Gm,Pm,Wcg,Wcp]=margin(t);

disp(Gm);

disp(Pm);
disp(Wgc);

disp(Wpc);

PROGRAM Output:

enter the gain---->

enter the zeros---->

enter the ploes---->

RESULTS:

EXPT.NO:3(c).NYQUIST PLOT

Aim: To obtain the Nyquist plot and to calculate the phase margin, gain margin, phase cross over

and gain cross over frequency for the systems whose open loop transfer function is given as

follows.

50(S+1)

G(S) = -----------------

S(S+3) (S+5)

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Procedure:

1. Input the zeroes, poles and gain of the given system.

2. Formulate the transfer function from zeroes, poles and gain of the system.

3. Plot the nyquist plot using function nyquist(t).

4. Estimate PM,GM, WPC , and WGC. Using function margin.

Program:

%Program to find the Nyquist Plot

% 50(s+1)
% --------
% s(s+3)(s+5)

clc;

clear all;

close all;

% initialzations

num=input('enter the numerator coefficients---->');

den=input('enter the denominator coefficients---->');

sys=tf(num,den);
nyquist(sys);

title('system1');

[Gm,Pm,Wcg,Wcp]=margin(sys);

disp(Gm);

disp(Pm);

disp(Wgc);

disp(Wpc);

Results:

enter the numerator coefficients---->

enter the denominator coefficients---->

Viva Questions:

1. What is the Rootlocus?

2. What is the Phase margin?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.4.TRANSFER FUNCTION ANALYSIS

A) Time Response for Step Input

B) Frequency Response for SinusoidalInput

A) Time Response for Step Input

Aim: To find the A) Time response for step input B) Frequency response for sinusoidal input.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

The general expression of transfer function of a second order control system is given as

Here, ζ and ωnare damping ratio and natural frequency of the system respectively

There are number of common terms in transient response characteristics and which are

1. Delay time (td) is the time required to reach at 50% of its final value by a time response

signalduring its first cycle of oscillation. Td

2. Rise time (tr) is the time required to reach at final value by a under damped time response

signalduring its first cycle of oscillation. If the signal is over damped, then rise time is counted as

thetime required by the response to rise from 10% to 90% of its final value.

β=tan-1] ; Tr= tan-1]=

3.Peak time (tp) is simply the time required by response to reach its first peak i.e. the peak of

firstcycle of oscillation, or first overshoot.

 Tp=

4. Maximum overshoot (Mp) is straight way difference between the magnitude of time

response and magnitude of its steady state. Maximum overshoot is expressed in term of

percentage of steady-state value of the response. As the first peak of response is normally

maximum in magnitude, maximum and steady-state value of a response.

Mp=e
-πξ

/

Mp%=e-πξ/ *100%

5. Settling time (ts) is the time required for a response to become steady. It is defined as the time

required by the response to reach and steady with value.

Ts= (2% Criterion)

6. Steady-state error (ess) is the difference between actual output and desired output at the

infinite range of time. ess=Limt-α [r(t)-c(t)]

Fig.1:Characterstics of Time Response

Problem Statement: For the closed loop system defined by

C(S) 100

------ = ----------------------

R(S) S
2
+12S+100

Plot the unit step response curve and find time domain specifications

PROGRAM: Time Response for Step Input

clc;

clear all;

close all;

num=input('enter the numerator coefficients---->);

den=input('enter the denominator coefficients---->);system=tf(num,den);

system

step(system)

grid on;

wn=sqrt(den(1,3));

zeta= den(1,2)/(2*wn);

wd=wn*sqrt(1-zeta^2);

disp('Delay time in seconds is')

td=(1+0.7*zeta)/wd

disp('Rise time in seconds is')

theta=atan(sqrt(1-zeta^2)/zeta);

tr=(pi-theta)/wd

disp('Peak time in seconds');

tp=pi/wd

disp('Peak overshoot is');

mp=exp(-zeta*pi/sqrt(1-zeta^2))*100

disp('settling time in seconds is');

ts=4/(zeta*wn)

Program Output:

enter the numerator coefficients---->

enter the denominator coefficients---->

Result:

B) Frequency Response for Sinusoidal Input

By the term frequency response, we mean the steady-state response of a system to a sinusoidal

input. Industrial control systems are often designed using frequency response methods. Many

techniques are available in the frequency response methods for the analysis and design of control

systems. Whenever it is not possible to obtain the transfer function of a system through analytical

techniques, frequency response test can be used to compute its transfer function. The design and

adjustment of open-loop transfer function of a system for specified closed-loop performance is

carried out more easily in frequency domain. Further, the effects of noise and parameter

variations are relatively easy to visualize and assess through frequency response. The Nyquist

criteria is used to extract information about the stability and the relative stability of a system in

frequency domain.

Program: Frequency Response for Sinusoidal Input

%Frequency Response of second order system

clc;

clear all;

close all;

num=input('enter the numerator coefficients---->');

den=input('enter the denominator coefficients---->');

%Transfer function

sys=tf(num,den);

wn=sqrt(den(1,3));

zeta= den(1,2)/(2*wn);

w=linspace(0,2);

u=w/wn;

len=length(u);

for k=1:len

m(k)=1/(sqrt((1-u(k)^2)+(2*zeta*u(k))^2));

phi(k)=-atan((2*zeta*u(k))/(1-u(k)^2))*180/pi;

end

subplot(1,2,1)

plot(w,m)

xlabel('normalized frequency')

ylabel('magnitude')

subplot(1,2,2)plot(w,phi)

xlabel('normalized frequency')

ylabel('phase')

disp('resonant peak is');

mr=1/(2*zeta*sqrt(1-zeta^2))

disp('resonant frequency in rad/sec is');

wr=wn*sqrt(1-2*zeta^2)

disp('bandwidth in rad/sec is');

wb=wn*sqrt(1-2*zeta^2+sqrt(2-4*zeta^2+4*zeta^4))

disp('phase margin in degrees is')

pm=180+(atan(2*zeta/sqrt(-2*zeta^2+sqrt(4*zeta^4 +1))))*180/pi

Program Output:

enter the numerator coefficients---->

enter the denominator coefficients---->

Result:

Viva Questions:

1. Explain the Delay time?

2. Draw the circuit of 2nd order system?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.5. LOAD FLOW STUDIES

A) Y bus Formation

Aim:To develop a mat lab program for Y bus FORMATION

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Procedure:

1. Switch on the computer with mat lab software

2. Double click the mat lab icon

3. In the command window go to file and open new M-file or editor file

4. Type the program code without errors

5. Save the file with .m extinction

6. Now debug the file for errors

7. If they are any errors and warnings rectify them and save the file

8. Again save and debug so that errors are avoided

9. To observe the output go to command window after debugging

10. Type Quit in the command window to exit from the mat lab.

Flowchart:

Fig.1:Flow chart of Ybus System.

Program:

clc;

linedata = [1 2 0.02 0.06 0.03 1;

 1 3 0.08 0.24 0.025 1;

 2 3 0.06 0.18 0.02 1;

 2 4 0.06 0.18 0.02 1;

 2 5 0.04 0.12 0.015 1;

 3 4 0.01 0.03 0.01 1;

 4 5 0.08 0.24 0.24 1;];

lp = linedata(:,1); % From bus number...

lq = linedata(:,2); % To bus number...

r = linedata(:,3); % Resistance, R...

x = linedata(:,4); % Reactance, X...

ycp = linedata(:,5); % Ground Admittance, B/2...

a = linedata(:,6); % Tap setting value..

z = r + i*x; % Z matrix...

y = 1./z; % To get inverse of each element...

ycp = i*ycp; % Make B imaginary...

nbus = max(max(lp),max(lq)); % no. of buses...

nline = length(lp); % no. of branches...

Y = zeros(nbus,nbus); % InitialiseYBus...

% Formation of the Off Diagonal Elements...

for k=1:nline

 Y(lp(k),lq(k)) = Y(lp(k),lq(k))-y(k)/a(k);

 Y(lq(k),lp(k)) = Y(lp(k),lq(k));

end

% Formation of Diagonal Elements....

for m =1:nbus

for n =1:nline

iflp(n) == m

 Y(m,m) = Y(m,m) + y(n)/(a(n)^2) + ycp(n);

elseiflq(n) == m

 Y(m,m) = Y(m,m) + y(n) + ycp(n);

end

end

end

 Y % Bus Admittance Matrix..

PRECAUTIONS:

1. Avoid spelling errors while typing

2. Save the file with extension of .m

3. Type the program in the editor window only.

Result:

B) PROGRAMMING OF POWER FLOW USING NEWTONRAPHSON METHOD.

Aim: To simulate power flow using NewtonRaphson Method.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Procedure:

1. Switch on the computer with mat lab software

2. Double click the mat lab icon

3. In the command window go to file and open new M-file or editor file

4. Type the program code without errors

5. Save the file with .m extinction

6. Now debug the file for errors

7. If they are any errors and warnings rectify them and save the file

8. Again save and debug so that errors are avoided

9. To observe the output go to command window after debugging

10. Type Quit in the command window to exit from the mat lab.

Flow Chart:

Fig.2:Flow chart of N-R Methods.

Program:

clc;

nbus = 3;

Y = [0-15i 0+10i 0+5i

 0+10i 0-15i 0+5i

 0+5i 0+5i 0-10i];

busdata = [1 1 1 0 0 0 0 0;

 2 2 1.1 0 5.3217 0 0 0;

 3 3 1 0 -3.6392 -0.5339 0 0;];

bus = busdata(:,1); % Bus Number..

type = busdata(:,2); % Type of Bus 1-Slack, 2-PV, 3-PQ..

V = busdata(:,3); % Specified Voltage..

del = busdata(:,4); % Voltage Angle..

P = busdata(:,5); % Real power

Q = busdata(:,6); % Reactive power

Qmin = busdata(:,7); % Minimum Reactive Power Limit..

Qmax = busdata(:,8); % Maximum Reactive Power Limit..

Psp = P; % P Specified..

Qsp = Q; % Q Specified..

G = real(Y); % Conductance matrix..

B = imag(Y); % Susceptance matrix..

pv = find(type == 2 | type == 1); % PV Buses..

pq = find(type == 3); % PQ Buses..

npv = length(pv); % No. of PV buses..

npq = length(pq); % No. of PQ buses..

Tol = 1;

Iter =1;

while (Tol > 0.000001) % Iteration starting..

 P = zeros(nbus,1);

 Q = zeros(nbus,1);

% Calculate P and Q

fori = 1:nbus

for k = 1:nbus

 P(i) = P(i) + V(i)* V(k)*(G(i,k)*cos(del(i)-del(k)) + B(i,k)*sin(del(i)-del(k)));

 Q(i) = Q(i) + V(i)* V(k)*(G(i,k)*sin(del(i)-del(k)) - B(i,k)*cos(del(i)-del(k)));

end

end

% Checking Q-limit violations..

ifIter<= 7 &&Iter> 2 % Only checked up to 7th iterations..

for n = 2:nbus

if type(n) == 2

if Q <Qmin(n)

 Q=Qmin;

elseif Q >Qmax(n)

 Q=Qmax;

end

end

end

end

% Calculate change from specified value

dPa = Psp-P;

dQa = Qsp-Q;

 k = 1;

dQ = zeros(npq,1);

fori = 1:nbus

if type(i) == 3

dQ(k,1) = dQa(i);

 k = k+1;

end

end

dP = dPa(2:nbus);

 M = [dP; dQ]; % Mismatch Vector

% Jacobian terms

% J1 - Derivative of Real Power Injections with Angles..

 J1 = zeros(nbus-1,nbus-1);

fori = 1:(nbus-1)

 m = i+1;

for k = 1:(nbus-1)

 n = k+1;

if n == m

for n = 1:nbus

J1(i,k) = J1(i,k) + V(m)* V(n)*(-G(m,n)*sin(del(m)-del(n)) + B(m,n)*cos(del(m)-del(n)));

end

 J1(i,k) = J1(i,k) - V(m)^2*B(m,m);

else

J1(i,k) = V(m)* V(n)*(G(m,n)*sin(del(m)-del(n)) - B(m,n)*cos(del(m)-del(n)));

end

end

end

% J2 - Derivative of Real Power Injections with V..

 J2 = zeros(nbus-1,npq);

fori = 1:(nbus-1)

 m = i+1;

for k = 1:npq

 n = pq(k);

if n == m

for n = 1:nbus

 J2(i,k) = J2(i,k) + V(n)*(G(m,n)*cos(del(m)-del(n)) + B(m,n)*sin(del(m)-del(n)));

end

 J2(i,k) = J2(i,k) + V(m)*G(m,m);

else

J2(i,k) = V(m)*(G(m,n)*cos(del(m)-del(n)) + B(m,n)*sin(del(m)-del(n)));

end

end

end

% J3 - Derivative of Reactive Power Injections with Angles..

 J3 = zeros(npq,nbus-1);

fori = 1:npq

 m = pq(i);

for k = 1:(nbus-1)

 n = k+1;

if n == m

for n = 1:nbus

 J3(i,k) = J3(i,k) + V(m)* V(n)*(G(m,n)*cos(del(m)-del(n)) + B(m,n)*sin(del(m)-del(n)));

end

 J3(i,k) = J3(i,k) - V(m)^2*G(m,m);

else

 J3(i,k) = V(m)* V(n)*(-G(m,n)*cos(del(m)-del(n)) - B(m,n)*sin(del(m)-del(n)));

end

end

end

% J4 - Derivative of Reactive Power Injections with V..

 J4 = zeros(npq,npq);

fori = 1:npq

 m = pq(i);

for k = 1:npq

 n = pq(k);

if n == m

for n = 1:nbus

 J4(i,k) = J4(i,k) + V(n)*(G(m,n)*sin(del(m)-del(n)) - B(m,n)*cos(del(m)-del(n)));

end

 J4(i,k) = J4(i,k) - V(m)*B(m,m);

else

J4(i,k) = V(m)*(G(m,n)*sin(del(m)-del(n)) - B(m,n)*cos(del(m)-del(n)));

end

end

end

 J = [J1 J2; J3 J4]; % Jacobian Matrix..

X = inv(J)*M; % Correction Vector

dTh = X(1:nbus-1); % Change in Voltage Angle..

dV = X(nbus:end); % Change in Voltage Magnitude..

% Updating State Vectors..

 del(2:nbus) = dTh + del(2:nbus); % Voltage Angle..

 k = 1;

fori = 2:nbus

if type(i) == 3

 V(i) = dV(k) + V(i); % Voltage Magnitude..

 k = k+1;

end

end

 Tol = max(abs(M)); % Tolerance..

Iter

V

del

J

Iter = Iter + 1;

End

Result:

Viva Questions:

1. What is Bus?

2. What is the comparison of GS, NR and FDCL?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.6. FAULT ANALYSIS

Aim: To Analyze Fault analysis of power system.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

Short circuits and other abnormal conditions often occur on a power system. Short circuits

areusually called “faults” by power system engineers. Some defects, other than short circuits

arealso termed as faults.

Faults are caused either by insulation failures or by conducting path failures. The

failureof insulation results in short circuits which are very harmful as they may damage

someequipment of the power system. Most of the faults in transmission and distribution lines

arecaused by over voltages due to lightning or switching surges, or by external conducting

objectsfalling on overhead lines. Overvoltages due to lightning or switching surges cause

flashover onthe surface of insulators resulting in short circuits. Short circuits are also caused by

tree branchesor other conducting objects falling on the overhead lines.

The fault impedance being low, the fault currents are relatively high. The fault

currentsbeing excessive, they damage the faulty equipment and the supply installation. Also, the

systemvoltage may reduce to a low level, windings and busbars may suffer mechanical damage

due tohigh magnetic forces during faults and the individual generators in a power station or

group ofgenerators in different power stations may loose synchronism

The symmetrical fault occurs when all the three conductors of a three-phase line are

brought together simultaneously into a short–circuit condition as shown in Figure 1.

Fig.1: 3-Phase fault analysis.

This type of fault gives rise to symmetrical currents i.e. equal fault currents with 1200

displacement. Thus referring to Figure 5.1, fault currents IA, IB and IC will be equal in magnitude

with 1200 displacement among them. Because of balanced nature of fault, only one phase needs

to be considered in calculations since condition in the other two phases will also be similar. A

three-phase short circuit occurs rarely but it is most severe type of fault involving largest

currents. For this reason, the balanced short-circuit calculations are performed to determine these

large currents to be used to determine the rating of the circuit breakers.

Procedure:

1. Open Matlab-->Simulink--> File ---> New---> Model

2. Open Simulink Library and browse the components

3. Connect the components as per circuit diagram

4. Set the desired voltage and required frequency

 5. Simulate the circuit using MATLAB

 6. Plot the waveforms.

Fig.2:The distribution Model.

Fig.3:Relay Subsystem.

RESULTS:

Viva Questions:

1. What is the type of faults?

2. What is the different between LLF and LLL?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.7. ECONOMIC POWER SCHEDULING

Aim: To understand the fundamentals of economic dispatch and solve the problem using

classical method with and without line losses.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

Mathematical Model for Economic Dispatch of Thermal Units

Without Transmission Loss:

Statement of Economic Dispatch Problem

In a power system, with negligible transmission loss and with N number of spinning thermal

generating units the total system load PD at a particular interval can be

met by different sets of

generation schedules

 {PG1^(k) , PG2^(k) , ………………PGN^(K) }; k = 1,2,……..NS

Out of these NS set of generation schedules, the system operator has to choose the set of

schedules,

which minimize the system operating cost, which is essentially the sum of the production cost of

all the generating units. This economic dispatch problem is mathematically stated as an

optimization problem.

Given: The number of available generating units N, their production cost functions, their

operating limits and the system load PD,

To determine: The set of generation schedules,

PGi; i=1,2,………………N ------(1)

Which minimize the total production cost

Min:FT= ΣFi(PGi) ------(2)

Power balance constraint

 ΣPGi-PD=0 ------(3)

And the operating limits

PGi,min ≤PGi ≤PGi,max ------(4)

The units production cost functions is usually approximated by quadratic function

Fi(PGi)=ai PG2
i+bi PGi+ci ; i=1,2,------N --------(5)

Where ai,bi and ci are constants.

 Necessary conditions for the existence of solution to ED problem

The ED problem given by the equations (1) to (4). By omitting the inequality constraints

(4) tentatively, the reduce ED problem (1),(2) and (3) may be restated as an unconstrained

Flowchart:

Fig.1:Flowchart of Economic Dispatch.

Procedure:

1. Enter the command window of the MATLAB.

2. Create a new M – file by selecting File - New – M – File

3. Type and save the program.

4. Execute the program by either pressing Tools – Run.

5. View the results.

Exercise-1:

The fuel cost functions for three thermal plants in $/h are given by

C1 = 500 + 5.3 P1 + 0.004 P1
2 ; P1 in MW

C2 = 400 + 5.5 P2 + 0.006 P2
2; P2 in MW

C3 = 200 +5.8 P3 + 0.009 P3
2; P3 in MW

The total load , PD = 800MW.Neglecting line losses and generator limits, find the optimal

dispatch and the total cost in $/h by analytical method. Verify the result using MATLAB

program.

Program:

alpha = [500; 400; 200];

beta = [5.3; 5.5; 5.8];

gamma = [0.004; 0.006; 0.009];

PD = 800;

DelP = 10;

lamda = input('Enter estimated value of Lamda = ');

fprintf(' ')

disp(['Lamda P1 P2 P3 DP'..............' grad Delamda'])

iter = 0;

while abs(DelP) >= 0.001

iter = iter + 1;

P = (lamda - beta)./(2*gamma);

DelP = PD - sum(P);

J = sum(ones(length(gamma),1)./(2*gamma));

Delamda = DelP/J;

disp([lamda,P(1),P(2),P(3),DelP,J,Delamda])

lamda = lamda + Delamda;

end

totalcost = sum(alpha + beta.*P + gamma.*P.^2)

Program OUTPUT:

>> Economicloadscheduling

Enter estimated value of Lamda =

Result:

Viva Questions:

1. What is the Economic seduling?

2. Explain the Fi(PGi)=ai PG2
i+bi PGi+ci?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.8. DESIGN OF FILTERS (LOW PASS FILTER)

Aim: To understand the fundamentals of Low pass Filters.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

A filter is a device that changes the amplitude (height) of an AC voltage (a voltage in the

form of a sine wave) as the frequency of the input voltage changes. Filters have two terminals.

The input terminals take in the input voltage, which passes through the filter and onto the output

terminals, where the resulting output waveform can be observed. Figure 1.1 is a basic

representation of a filter.

Fig.1: Circuit for the Filter.

There are several types of filters, but in this experiment, we will be looking at three types.

 low-pass filter is a filter that allows a signal of a low frequency (i.e. a low amount of

oscillations per second) to pass through it. Consequently, it attenuates (reduces) the amplitude of

an input signal whose frequency is higher than the cutoff frequency.

 high-pass filter is a filter that passes high frequencies well, but attenuates (or reduces)

frequencies lower than the cutoff frequency.

 band-pass filter is a device that passes frequencies within a certain range and rejects

(attenuates) frequencies outside that range.

These three filters will be investigated in this experiment.

Low-Pass Filter

Figure (a) shows a simple low-pass filter consisting of a resistor and a capacitor, which should be

constructed on your breadboard. Notice that the input is connected in series with the resistor, and

the output is the voltage across the capacitor. The input and output have one common terminal,

which is the low (ground, or reference) side of each.

FILTER Input

Vin

Output

Vout

R = 10kW

C = 47nF VoutVin

Fig.2: Low-pass filter.

Vin(t)-Vout(t)=Ri(t)

Qc(t)=CVout(t)

i(t)=dQc/dt

Vin(t)-Vout(t)=RC(dVout/dt)

Procedure:

1. Enter the command window of the MATLAB.

2. Create a new M – file by selecting File - New – M – File

3. Type and save the program.

4. Execute the program by either pressing Tools – Run.

5. View the results.

Fig.3.:Simulink model of Low Pass Filter.

Fig.4: Desing of Sub System (low pass filters)

Result:

Viva Questions:

1. What is the Filter?

2. Explain the Low pass filter and High pass filters?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.9. CHOPPER FED DC MOTOR DRIVES

Aim: Chopper fed DC drives; the variable voltage to the armature of a dc motor for speed

control can be obtained from a dc chopper.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

 A dc motor fed by dc source through a chopper which consist of gto thyristor and free

wheeling diode D.The motor drive mechanical load characteristics by inertia “J” .Friction

coefficient “B” and load torque TL.The motor uses the descrete dc machine provided in the

machine library.The hysteresis current controller compares the sensed current with reference

and generate the trigger signal for the gtothyrister to force the motor current to follow the

reference. The speed controller loop uses a propotionalintegeral controller loop which

provides the reference for the the current loop.

Procedure

• Open the matlab window

• Select ”simulink”icon from the window

• Simulink library browser will appear

• Select “new model”from the file menu

• Select all the functional blocks required from the various libraries and copy them to the

new model

• Connect the blocks according to the block diagram

• Select the parameters of various blocks according to requirements and initialize the

model property

• Select the discrete state in the configuration parameters

• Simulate the completed block diagram and analysis the performance using the wave

forms obtained using a “scope”

• Save the file using .mdl extension

Fig.1: Matlab Simulink Model To Open Loop Control Dc Motor Drives.

Open Loop Output:

Fig.2: Matlab Simulink Model To Closed Loop Control Dc Motor Drives.

Rating of the elements used in above simulation:

DC input voltage – 240 V

 DC machine rating – 5HP, 240 V, 1750rpm

Applied field voltage – 300 V

Torque of 10 N-m is applied @ 1 sec ,

L – 10mH

After simulation of the above model we are getting a graph of armature speed, armature current,

electrical torque and armature voltage with respect to time.

The speed of a dc motor has been successfully controlled by using Chopper as a converter and

Proportional-Integral type Speed and Current controller based on the closed loop model of DC

motor. Initially a simplified closed loop model for speed control of DC motor is considered and

requirement of current controller is studied. Then a generalized modelling of dc motor is

done.Afterthat a complete layout of DC drive system is obtained. Then designing of current and

speed controller is done. Now the simulation is done in MATLAB under varying load condition,

varying reference speed condition and varying input voltage. The results are also studied and

analyzed under above mentioned conditions. The model shows good results under all conditions

employed during simulation. Since, the simulation of speed control of DC motor has been done.

We can also implement it in hardware to observe actual feasibility. Here speed control of DC

motor is done for rated and below rated speed. We can also control the speed of DC motor above

rated speed and this can be done by field flux control.

Closedloop Output:

At simulation time stop =1

At simulation time stop =10

Result:

Viva Questions:

1. What is a Chopper?

2. What is the difference between chopper and inverter?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

6. Classify choppers.

EXPT.NO.10. VOLTAGE SOURCE INVERTER CONTROLLED INDUCTION MOTOR

DRIVE

Aim: To control an induction motor drive using VSI

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

 Voltage source inverter gives schematic diagram of a VSI fed induction motor drive using

transistor is shown in below. self-commutated device can be used instead of transistor. Generally

MOSFET is used in low voltage low power inverters, IGBT and power transistors are used up to

medium power levels and GTO and IGCT are used for high power levels.

VSI can be operated as a stepped wave inverter or a pulse width modulated (PWM) inverter.

When operated as a stepped wave inverter, transistor are a time difference of T/6 and each

transistor is kept of one cycle. Resultant line voltage waveform is shown in fig. Frequency of the

inverter operation is varied by varying T and the output voltage of inverter is varied by varying

dc input Transistor Inver The various VSI controlled IM drive is shown below. i. When supply is

dc, variable dc input voltage

Fig.1: Transistor Inverter-fed Induction Motor Drive.

Procedure:

Open the matlab window

• Select ”simulink”icon from the window

• Simulink library browser will appear

• Select “new model”from the file menu

• Select all the functional blocks required from the various libraries and copy them to the

new model

• Connect the blocks according to the block diagram

• Select the parameters of various blocks according to requirements and initialize the

model property

• Select the discrete state in the configuration parameters

• Simulate the completed block diagram and analysis the performance using the wave

forms obtained using a “scope”

• Save the file using .mdl extension

• Click the run button and analyse the outputs.

Fig.2:Simulated diagram of the VSI controlled Induction Motor Drive.

Fig.3: Gating Signal control for VSI..

Fig.4:Line voltage.

Fig.5:Phase Voltage.

Fig.6:Current in R phase.

Fig.7:Voltage across Capacitor.

.
Fig.8:Speed in RPM.

Fig.9:Torque .

Result:

Viva Questions:

1. What is a Voltage source Inverter?

2. What is the difference between chopper and Voltage source Inverter?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.11. AUTOMATIC GENERATION CONTROL

Aim:To determine the change in speed, frequency and steady state error corresponding to a load

disturbance in a single area and a two area power system, with and without supplementary

control using software.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

SIMULINK is an interactive environment for modelling, analyzing and simulating a wide variety

of dynamic systems. SIMULINK provides a graphical user interface for constructing block

diagram models using drag and drop operations. A system is configured in terms of block

diagram representation using library of standard components. A system in block diagram

representation is built easily and simulation results are displayed quickly.

Single Area System:

Fig.1: Load frequency control block diagram of an isolated power system

Problem 1:

An isolated power system has the following parameters:

Turbine time constant, Tt = 0.5 Sec

Governor time constant, Tg = 0.2 Sec

Generator time constant, H = 5 Sec

Governor Speed regulator, R = R pu.

The load varies by 0.8% for 1% change in frequency, i.e., D=0.8. The governor speed regulation

is set to R= 0.05 pu. The turbine rated output is 250 MW. At normal frequency of 50 Hz a

sudden load change of 50MW (ΔPL= 0.2pu) occurs. Construct a SIMULINK block 'diagram-and

obtain the frequency deviation response for the condition given above.

Fig .2: Two area system with only primary LFC Loop

RESULTS:

Viva Questions:

1. What is a primary LFC Loop?

2. What is the difference between single area and two area?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

EXPT.NO.12. Z-BUS BUILDING ALGORITHM USING MATLAB SOFTWARE

Aim: To obtain the Zbus matrix for the given power system using Zbus building algorithm and

to verify the same using MATLAB.

Apparatus:

S.No. NAME No.

1 PC 1

2 MATLAB Programing

Software

1

Theory:

The Ybus /Zbus matrix constitutes the models of the passive portions of the power network. The

impedance matrix is a full matrix and is most useful for short circuit studies. An algorithm for

formulating [Zbus] is described in terms of modifying an existing bus impedance matrix

designated as [Zbus]old. The modified matrix is designated as [Zbus]new. The network consists

of a reference bus and a number of other buses. When a new element having self impedance Zb

is added, a new bus may be created (if the new element is a tree branch) or a new bus may not be

created (if the new element is a link). Each of these two cases can be subdivided into two cases

so that Zb may be added in the following ways:

 1. Adding Zb from a new bus to reference bus.

2. Adding Zb from a new bus to an existing bus.

3. Adding Zb from an existing bus to reference bus.

4. Adding Zb between two existing buses.

Procedure:
1. Enter the command window of the MATLAB.

2. Create a new M – file by selecting File - New – M – File

3. Type and save the program in the editor Window

4. Execute the program by either pressing Tools – Run.

5. View the results.

Exercise:
(i) Determine the and Z bus matrix for the power system network shown in fig.

(ii) Check the results obtained in using MATLAB.

PROBLEM ON FORMATION OF Zbus: Find the bus impedance matrix using Zbus building

algorithm for the given power system whose reactance values are as follows.

Table.1

Sending end Receiving end Reactance values in

ohms

0 1 J1.0

0 2 J0.8

1 2 J0.4

1 3 J0.2

2 3 J0.2

3 4 J0.008

%Program For Formation Of Zbus Using The Given Data:

z = [0 1 0 1.0

0 2 0 0.8

1 2 0 0.4

1 3 0 0.2

2 3 0 0.2

3 4 0 0.08];

Y = ybus(z)

Ibus = [-j*1.1; -j*1.25; 0; 0];

Zbus = inv(Y)

Vbus = Zbus*Ibus

Result:

Viva Questions:

1. What is a Bus?

2. What is the difference between Z-Bus and Y-Bus?

3. What is MATLAB?

4. What is the purpose of simulating in MATLAB software?

5. What are the advantages of MATLAB software?

